Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Current earthquake forecasting approaches are mainly based on probabilistic assumptions, as earthquakes seem to occur randomly. Such apparent randomness can however be caused by deterministic chaos, rendering deterministic short‐term forecasts possible. Due to the short historical and instrumental record of earthquakes, chaos detection has proven challenging, but more frequently occurring slow slip events (SSE) are promising candidates to probe for determinism. Here, we characterize the SSE signatures obtained from GNSS position time series in the Hikurangi Subduction Zone (New Zealand) to investigate whether the seemingly random SSE occurrence is governed by chaotic determinism. We find evidence for deterministic chaos for stations recording shallow SSEs, suggesting that short‐term deterministic forecasting of SSEs, similar to weather forecasts, might indeed be possible over timescales of a few weeks. We anticipate that our findings could open the door for next‐generation SSE forecasting, adding new tools to existing probabilistic approaches.more » « less
-
Importance The p.Asp67Tyr genetic variant in the GJA3 gene is responsible for congenital cataracts in a family with a high incidence of glaucoma following cataract surgery. Objective To describe the clinical features of a family with a strong association between congenital cataracts and glaucoma following cataract surgery secondary to a genetic variant in the GJA3 gene ( NM_021954 .4:c.199G>T, p.Asp67Tyr). Design, Setting, and Participants This was a retrospective, observational, case series, genetic association study from the University of Iowa spanning 61 years. Examined were the ophthalmic records from 1961 through 2022 of the family members of a 4-generation pedigree with autosomal dominant congenital cataracts. Main Outcomes and Measures Frequency of glaucoma following cataract surgery and postoperative complications among family members with congenital cataract due to the p.Asp67Tyr GJA3 genetic variant. Results Medical records were available from 11 of 12 family members (7 male [63.6%]) with congenital cataract with a mean (SD) follow-up of 30 (21.7) years (range, 0.2-61 years). Eight of 9 patients with congenital cataracts developed glaucoma, and 8 of 8 patients who had cataract surgery at age 2 years or younger developed glaucoma following cataract surgery. The only family member with congenital cataracts who did not develop glaucoma had delayed cataract surgery until 12 and 21 years of age. Five of 11 family members (45.5%) had retinal detachments after cataract extraction and vitrectomy. No patients developed retinal detachments after prophylactic 360-degree endolaser. Conclusions and Relevance The GJA3 genetic variant, p.Asp67Tyr, was identified in a 4-generation congenital cataract pedigree from Iowa. This report suggests that patients with congenital cataract due to some GJA3 genetic variants may be at especially high risk for glaucoma following cataract surgery. Retinal detachments after cataract extraction in the first 2 years of life were also common in this family, and prophylactic retinal endolaser may be indicated at the time of surgery.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « lessFree, publicly-accessible full text available December 9, 2026
-
Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV.more » « lessFree, publicly-accessible full text available October 28, 2026
-
Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses and (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— and , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130M⊙should be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200M⊙form through gravitational-wave-driven mergers.more » « lessFree, publicly-accessible full text available October 27, 2026
-
Abstract Seafloor pressure sensor data is emerging as a promising approach to resolve vertical displacement of the seafloor in the offshore reaches of subduction zones, particularly in response to slow slip events (SSEs), although such signals are challenging to resolve due to sensor drift and oceanographic signals. Constraining offshore SSE slip distribution is of key importance to understanding earthquake and tsunami hazards posed by subduction zones. We processed seafloor pressure data from January to October 2019 acquired at the Hikurangi subduction zone, offshore New Zealand, to estimate vertical displacement associated with a large SSE that occurred beneath the seafloor array. The experiment included three self‐calibrating sensors designed to remove sensor drift, which, together with ocean general circulation models, were essential to the identification and correction of long‐period ocean variability remaining in the data after applying traditional processing techniques. We estimate that long‐period oceanographic signals that were not synchronous between pressure sensors and reference sites influenced our inferred displacements by 0.3–2.6 cm, suggesting that regionally deployed reference sites alone may not provide sufficient ocean noise correction. After incorporating long‐period ocean variability corrections into the processing, we calculate 1.0–3.3 cm of uplift during the SSE offshore Gisborne at northern Hikurangi, and 1.1–2.7 cm of uplift offshore the Hawke's Bay area at central Hikurangi. Some Hawke Bay displacements detected by pressure sensors near the trench were delayed by 6 weeks compared to the timing of slip onset detected by onshore Global Navigation Satellite System sites, suggesting updip migration of the SSE.more » « less
-
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses and , and small spins (90% credibility) and negligible eccentricity . Postmerger data excluding the peak region are consistent with the dominant quadrupolar mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4M⊙c2and luminosity 2.6 × 10−4M⊙c2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory.more » « lessFree, publicly-accessible full text available April 10, 2026
An official website of the United States government
